
UIGV
23COMTEL 2014

VI Congreso Internacional de Computación y Telecomunicaciones

COMTEL 2014
VI Congreso Internacional de Computación y Telecomunicaciones 19

Allin Qillqay! A Free On-Line Web spell checking Service for Quechua

Richard A. Castro Mamani1, Annette Rios Gonzales2
rcastro@hinantin.com, arios@ifi.uzh.ch

1 Computer Science Department, Universidad Nacional de San Antonio Abad del Cuzco
2 Institute of Computational Linguistics, University of Zurich

Abstract: In this paper we analyze the advantages and disadvantages of porting the current available spell checking
technologies in its primary form (meaning without speed and efficiency improvements) to the Internet in the form of
Web services, taking the existing Quechua spell checkers as a case of study. For this purpose we used the CKEditor, a
well-known HTML text processor and its spell-check-as-you-type (SCAYT) add-on on the client side. Furthermore, we
built our own compatible server side application called “Allin Qillqay!” „Correct Writing/Spelling!'.

Key words: spellchecker traffic, spell checking parameters, HTML Editor, Quechua.

1 Introduction
This is a paper about the current spell-checking
technologies and is based on two premises. ―The first is
that the Internet is becoming an increasingly important
part of our lives‖ (The Mozilla Manifesto1). During the
past few years, several new JavaScript applications have
appeared that provide the user with functionalities on the
web comparable to desktop programs. One of the main
reasons behind this development is that the slow page
requests every time a user interacts with a web application
are gone; as the JavaScript engines are now sufficiently
powerful to keep part of the processing on the client side
[MacCaw2011].

Among the most well-known rich JavaScript productivity
applications2 figure iWork for iCloud3 and, more
recently, Microsoft Office 3654, Google Docs5, GMail6
and also the CKEditor7, a free open source HTML text
editor which brings common word processor features
directly to web pages.

Most of the web applications listed above are constantly
being enhanced with new features, yet some important
features, such as spell checking, have been neglected or
are not integrated as web services but instead depend
heavily on the web browser language configuration, or the
spell checking plug-ins installed.

In 2012, we decided to implement our own productivity
application using HTML, JavaScript and the state-of-the-
art spell checking technology available for Quechua. The
goal was to create an application with a user friendly
interface similar to what users can expect from desktop
applications. The integration of the spell checkers into the
web application provides a comfortable and easy way to
test the quality of the Quechua spelling correction.

1 http://www.mozilla.org/en-US/about/manifesto/
2 The term productivity software or productivity
application refers to programs used to create or modify a
document, image, audio or video clip.
3 https://www.apple.com/iwork-for-icloud/
4
5 http://docs.google.com
6 http://mail.google.com
7 http://ckeditor.com/

The outline of this paper is as follows: Section 2 presents
the basic concepts in spell checking. In section 3 we
describe related work regarding the advancements in the
field of on-line spell checking. Section 4 gives a general
overview of the Quechua language family. Section 5 lists
all the publicly available spell checkers for Quechua. The
overall description of the system is given in section 6, and
in section 7 we describe the some of the recent
experiments and improvements.

2 Spell Checking
Liang [Liang2009] describes the overall spell checking
task in computer science as follows: ―Given some text,
encoded by some encoding (such as ASCII, UNICODE,
etc.), identify the words that are valid in some language,
as well as the words that are invalid in the language (i.e.
misspelled words) and, in that case, suggest one or more
alternative words as the correct spelling‖.

The spell checking process can generally be divided into
three steps (See Figure 1):

Figure 1. Spell checking process.

2.1. Error Detection
Error detection is a crucial task in spelling correction. In
order to detect invalid words, the spell checker usually
performs some kind of a dictionary lookup. There are
three main formats for machine readable dictionaries used
in spelling correction:

1. a list of fully-fledged word forms

2. a separate word (.dic) file and an affix (.aff) file

3. a data structure called 'finite state transducer' that
comprehends the morphology of the language
(i.e. the rules of word formation). This approach
is generally used in spelling correction for
languages with complex morphology, where one
word (or root) may appear in thousands of
different word forms, such as Quechua. As an
illustration of Quechua word formation, see
Example 1 with the parts (i.e. morphemes)

UIGV
24 COMTEL 2014

VI Congreso Internacional de Computación y Telecomunicaciones

COMTEL 2014
VI Congreso Internacional de Computación y Telecomunicaciones 20

contained in the Quechua word
ñaqch'aykuchkarqaykiñachum8:

 (1) ñaqch‟a -yku -chka -rqa -yki

 comb +Aff +Prog +Pst +1.Sg.Subj_2.Sg.Obj

 -ña -chu -m

 +Disc +Intr +DirE

Further details about finite state transducers applied to
spell checking are not here presented for space reasons
and can be consulted in Beesley & Karttunen
[BeesleyKarttunen03].

2.2. Error Correction
There are two main approaches for the correction of
misspelled words: isolated-word error correction or
context-dependent error correction. With the former
approach, each word is treated separately disregarding the
context, whereas with the latter approach, the textual
context of a word is taken into consideration as well.

Error Model produces the list of suggestions for a given
misspelling, using different algorithms and strategies
depending on the characteristics of the misspelled word.

A Typo is a small mistake in a typed or printed text.

A Real Word Error is an error which accidentally results
in a valid word but it is not the intended word in sentence.

Only a context-dependent corrector can correct real-word
errors, as the isolated-word approach will not detect this
kind of mistake.

2.3. Suggestion Ranking
Ranking is the ordering of suggested corrections
according to the likelihood that the suggestion is the
originally intended word.

3 Related Work
In recent years there have been some advancements
regarding online spell checking, mainly the incorporation
of spell-check-as-you-type SCAYT technology, allowing
users to have a much more responsive and natural
experience. SCAYT is based purely on JavaScript and
asynchronous requests to the server from its client
applications.

It is not uncommon for a spell checker to start with a web
application and then to get to the more traditional desktop
version. Dembitz et al. [Dembitz2011] developed
Hascheck, an online spellchecker for Croatian, an under-
resourced language with a relatively rich morphology
which is spoken by approximately 4.5 million persons in
Croatia. The dictionary used for this system is a list of
fully-fledged word forms. What sets this spell checker
apart from others is its ability to learn from the texts it
spellchecks. With this approach they achieve a quality
comparable to English spell checkers, as a consequence

8 Abbreviations: +Aff: affective, +Prog: progressive,
+Pst: past, Sg: singular, Obj: object, +Disc:
discontinuative ('already'), +Intr: interrogative, DirE:
direct evidentiality

Hascheck was crucial during the development of other
applications for NLP tasks.

Francom et al. [Hulden2013] developed jsft, a free open-
source JavaScript library which provides means to access
finite-state machines. This API is used to build a spell
checking dictionary on the client side of a web application
obtaining good results. Although we did not use this API
as part of the current version of our system, we believe
that jsft is clearly a very important development in the
evolution of spell-checking on the web.

WebSpellChecker9 is a non-free spell checking service
for a wide range of languages; it can be integrated in the
form of a plug-in to the major open-source HTML text
editors. WebSpellChecker was used as a model for our
project, although ours is open-source and freely available.

4 Quechua
Quechua [Rios2011] is a language family spoken in the
Andes by 8-10 million people in Peru, Bolivia, Ecuador,
Southern Colombia and the North-West of Argentina.
Although Quechua is often referred to as a language and
its local varieties as dialects, Quechua is a language
family, comparable in depth to the Romance or Slavic
languages [AdelaarMuysken04, 168]. Mutual
intelligibility, especially between speakers of distant
‗dialects‘, is not always given. The spell checkers used in
our experiments are designed for different Quechua
varieties.

5 A case of study: Quechua Spell
Checkers

When it comes to elaborating a spell checker, Hunspell10
and MySpell are the most well-known technologies.
Nevertheless, these formalisms have serious
disadvantages concerning the suggestion quality for
morphologically complex agglutinative languages such as
Quechua. In order to overcome the problems of HunSpell,
several spell checkers for agglutinative languages rely on
finite-state methods, as these are better suited to capture
complex word formation strategies. An example of such a
finite-state spelling corrector is part of the Voikko11 plugin
for Finnish. The Quechua spell checkers used in our
experiments make also use of this approach.

These are the spell checkers used in our web application:

 Cusco Quechua spell checker (3 vowels),
implemented with the Foma Toolkit [Rios2011]. The
orthography used as standard in this corrector adheres
to the local Cusco dialect. We will use the
abbreviation ―cuz_simple_foma‖ to refer to this spell
check engine.

 Normalized Southern Quechua spell checker,
implemented in Foma as well. The orthography in
this spell checker is the official writing standard in

9 http://www.webspellchecker.net
10 http://hunspell.sourceforge.net/
11 http://voikko.puimula.org/

UIGV
25COMTEL 2014

VI Congreso Internacional de Computación y Telecomunicaciones

COMTEL 2014
VI Congreso Internacional de Computación y Telecomunicaciones 21

Peru and Bolivia12, as proposed by the Peruvian
linguist R. Cerrón Palomino [Cerrón-Palomino94].
We will use the abbreviation ―uni_simple_foma‖ for
this spell checker.

 Southern Unified Quechua, with an extended Spanish
lexicon and a large set of correction rules. This
spelling corrector is also implemented in Foma, and it
uses the same orthography as uni_simple_foma. The
Spanish lexicon permits the correction of loan words
consisting of a Spanish root combined with Quechua
suffixes. The additional set of rules, on the other
hand, rewrites common spelling errors directly to the
correct form. By this procedure, the quality of the
suggestions improves considerably. We will use the
abbreviation ―uni_extended_foma‖ to refer to this
spell checker.

 Bolivian Quechua spell checker (5 vowels) by Amos
Batto, it was built using MySpell. In the following we
will use the abbreviation ―bol_myspell‖ for this spell
checker.

 Ecuadorian Unified Kichwa (from Spanish, Kichwa
Ecuatoriano Unificado) spell checker, implemented
in Hunspell by Arno Teigseth. We will use the
abbreviation ―ec_hunspell‖ for this spell checker.

6 Our spell checking web service: Allin
Qillqay!

The system13 is an on-line spell checking service which
offers a demo version of all the different spell checkers
for Quechua that have been built so far in a user friendly
HTML text editor. The system operates interactively,
preserving the original formatting of the document that
the user is proofreading. The most important advantage of
online spell checking lies in the community of users (See
Figure 2). Unlike conventional spell checking in a
desktop environment, where the user-application relation
is one-to-one, in on-line spell checking, there is a many-
to-one relation. This circumstance has been beneficial for
the enhancement of the spell checker dictionary: Unlike
the user-defined customized dictionary in a desktop
program, which stores the false positives14 of only one
user, all of the false positives that occur in on-line spell
checking are stored in a single dictionary and thus benefit
the entire community. Hence, our on-line spell checking
service is constantly improving its functionality through
interaction with the community of users.

6.1. Client side application
This section describes the different resources we use for
the client side of the web service and how they interact
with each other.

12 There is one small difference: Bolivia uses the letter
<j> to write /h/, whereas Peru uses <h>, e.g. Peru: hatun
vs. Bolivia: jatun (‗big‘).
13 http://hinantin.com/spellchecker/
14 A false positive refers to words that are correctly
spelled, but unknown to the spell checker. In this case, the
user can add those words to the dictionary.

6.1.1 CKEditor
The CKEditor15 is an open source HTML text editor
designed to simplify web content creation. This program
is a WYSIWYG16 editor that brings common word
processor features to web pages.

6.1.2 Dojo Toolkit
The Dojo Toolkit17 is an Open-Source JavaScript library
used for rapid development of robust, scalable, rich web
projects and fast applications, among diverse browsers. It
is dual licensed under the BSD and AFL license.

6.1.3 SpellCheckAsYouType (SCAYT) Plug-in
This Spell Check As You Type (SCAYT) plug-in18 for the
CKEditor, is implemented using the Dojo Toolkit
JavaScript libraries. By default it provides only access to
the spell checking web-services of
WebSpellChecker.net19.

Figure 3. SCAYT working with our spell checking web
service and the cuz_simple_foma spell-checking engine

in the same manner as it works with
WebSpellChecker.net service.

15 http://http://ckeditor.com
16What You See Is What You Get
17 http://dojotoolkit.org
18 http://ckeditor.com/addon/scayt
19 http://www.webspellchecker.net/scayt.html

UIGV
26 COMTEL 2014

VI Congreso Internacional de Computación y Telecomunicaciones

COMTEL 2014
VI Congreso Internacional de Computación y Telecomunicaciones 22

The SCAYT product allows users to see and correct
misspellings while typing, the misspelled words are
underlined. If a user right-clicks one of those underlined
words he will be offered a list of suggestions to replace
the word, see Figure 3. Furthermore, SCAYT allows the
creation of custom user dictionaries. SCAYT is available
as a plug-in for CKEditor, FCKEditor and TinyMCE. The
plugin is compatible with the latest versions of Internet
Explorer, Firefox, Chrome and Safari, but not with the
Opera Browser.

6.1.4 Client Side Pipeline
The encoding used throughout the processing chain is
UTF-8, since the Quechua alphabet contains non-ASCII
characters.

 CS01 Submitting tokenized text:

The tokenization process is done entirely by the SCAYT
plug-in. For instance, if the original text written inside the
CKEditor textbox is:

Kuraq runaqa erqekunan karanku chaypaspisillan
yuyarinku.

The data submitted to our web server is the tokenized
input text:

Kuraq, runaqa, erqekunan, karanku, chaypaspisillan,
yuyarinku

Note that each word is separated by a comma and none of
the format properties such as Bold or Italic are sent to the
server. There are, however, other parameters that can be

included in the data sent to the server, such as the
language, the type of operation, or whether or not the
word should be added to the user dictionary.

 CS02 CGI program's response

JSON is the format of the response data from our CGI
program:

{incorrect:[[―erqekunan‖,[―irqikuna‖]],

[―chaypaspisillan‖,[―chaypaspasllam‖,

―chaypaspasllas‖, ―chaypaspaslla‖]]],

correct:[―Kuraq‖,―runaqa‖,―karanku‖,―yuyarinku‖]}

The response data is processed and rendered by the
SCAYT plug-in.

6.2. Server side application
In summary, the server side implementation is an
interface which interacts with the spell checkers for
Quechua, as well as with the user dictionary and the error
corpora, see Figure 4.

We developed a server side application that is compatible
with the SCAYT add-on. The application makes it
possible to use state-of-the-art spell checking software,
such as finite-state transducers, in a web service. Our web
server runs on a Linux Ubuntu Server 12.04 x64 operating
system20.

20 We did not test our server-side application on a server
running Windows Server.

Figure 2. Online Web Spell checking Client/Server CGI System Diagram, every step is explained in section 6

(notice the codes CS** client side and SS** server side with their corresponding step number).

UIGV
27COMTEL 2014

VI Congreso Internacional de Computación y Telecomunicaciones

COMTEL 2014
VI Congreso Internacional de Computación y Telecomunicaciones 23

Figure 4. Server Side Application: This robustness

diagram is a simplified version of the
communication/collaboration between the entities of our

system.

The user dictionary is stored in a MySQL21 relational
database. More specific information (classification, type,
language, language variety, etc.) concerning misspellings
and unknown words is stored in an object oriented
database, in a XML format, using Basex22.

6.2.1. Server side pipeline
 SS01 Call CGI:

The web server calls and uses CGI as an interface to the
programs that generate the spell-checking responses.

 SS02 Spell check input terms:

The CGI program splits the comma separated words, and
checks their correctness using the corresponding spell
checker back end.

If a word is not recognized as correct, a request for
suggestions is sent to the spell checking back end and the
received suggestions are then included into the JSON
response string.

We used two different approaches for the interaction with
the spell checking back end:

The first approach consisted in a re-implementation of
foma's flookup for the processing chain of the different
finite state transducers used for spell checking in
uni_simple_foma. This module can process text in batch
mode, but it has to load the finite state transducers into the
memory with every new call. As the finite state
transducers, especially with the improved version
uni_extended_foma, are quite large, loading those
transducers takes a few seconds, which in turn makes the
text editing through CKEditor noticeably slower.

For this reason, we implemented a TCP server-client back
end for spell checking: the server loads the finite state
transducers into memory at start up and can later be
accessed through the client. As the transducers are already
loaded, the response time is much quicker, see Section
7.3.

 SS03 Save relevant data into the database:

The misspellings are saved in our MySQL database in the
form of custom user dictionaries and a list of incorrect

21 http://www.mysql.com/
22 http://basex.org/

terms to be analyzed. More information about the
misspellings is saved in our

XML Object Oriented Database in BaseX, since these
misspellings will conform our error corpus.

Two linguists from the UNMSM23 are currently analyzing
and categorizing those misspellings according to the type
of error, this information will be used as feedback to
improve our spell-checking engines (lexicons, suggestion
quality).

7 Experiments and Results
Evaluating Suggestion Accuracy from each
Spell Checking Engine
In this section, we present a comparison between the
different approaches used in the spell checking back end,
and we hope to answer the following question: Does
finite-state spell checking with foma give more reliable
suggestions than MySpell and HunSpell for an
agglutinative language?

Our online application makes it possible to group all the
available spell checking engines in one place, which in
turn allows for an easy comparison.

7.1.1 Minimum Edit Distance as a Metric for
Spell Checking Suggestion Quality

We used the Natural Language Toolkit24 (NLTK),
publicly available software, to calculate the edit distance.
Suggestion Edit Rate (SER) reports the ratio of the
number of edits incurred to the total number of characters
in the reference word; we used this toolkit for easy
replicability of the tests we present here.

Misspelled term:

Rimasharankiraqchusina

Suggestions by uni_simple_foma (number of edits):

- Rimacharankiraqchusina (0.04)

- rimacharankiraqchusina (0.08)

- rimacharankiraqchusuna (0.13)

- Rimacharankiraqchusuna (0.08)

- rimacharankitaqchusina (0.13)

- Rimacharankitaqchusina (0.08)

Reference word:

Rimachkarqankiraqchusina

7.1.2 Evaluation of Spell Checkers using
Minimum Edit Distance

Table 1 contains the suggestions produced by
uni_simple_foma, ec_hunspell and bol_myspell.

23 Universidad Nacional Mayor de San Marcos
24 http://www.nltk.org/

UIGV
28 COMTEL 2014

VI Congreso Internacional de Computación y Telecomunicaciones

COMTEL 2014
VI Congreso Internacional de Computación y Telecomunicaciones 24

The first column of Table 1 contains the word forms for
testing, taken from Paredes-Cusi [Paredes-Cusi2009]. All
of these words have the same root (rima- ‗to speak‘)
which is a highly used word across dialects and is
contained in the lexicons of each spell checking engines
we presented in Section 5. The test words are written in
the standard proposed by the AMLQ25, and are spelled
correctly according to the cuz_simple_foma spell
checking engine.

The columns on the right contain the suggestions
provided by the spell checking engines
uni_simple_foma, ec_hunspell, bol_myspell. Note that
the dot ―.‖ sign in a cell stands for a correct word,
additionally we provided the SER value for each

25 Academia Mayor de la Lengua Quechua in Cusco.

suggestion and we signal if the suggestion is correct by
pointing it out with the ‗expected‘ flag and by
highlighting it, otherwise, we do not signal anything.

A glance at the suggestions by ec_hunspell and
bol_myspell reveals that the quality varies according to
the complexity of the word: the more suffixes the
misspelled word has, the less adequate and more distorted
the suggestions become (see Table 1).

The suggestions offered by each one of the spell checker
engines, especially by Ecuadorian Kichwa and Bolivian
Quechua do not cope adequately with the rich
morphology of this language, as some of their suggestions
do not even share the same root as the misspellings in the
first column of Table 1.

Table 1. Comparing the suggestions from each spell checker engine.

Misspelled Term
(Cuzco Quechua)

Suggestions with its corresponding SER values
Southern Unified Quechua
FOMA (uni_simple_foma)

Ecuadorian Kichwa
Hunspell (ec_hunspell)

Bolivian Quechua
MySpell (bol_myspell)

Rimay . . .
Rimanki . . .
Rimashanki rimasqanki (0.18),

Rimasqanki (0.09),
rimachanki (0.18),
Rimachanki (0.09),
rimasqanku (0.27),
rimasqanka (0.27)

Rimashkanki (0.09) ‗expected‘,
Rimashkani (0.18),
Imashinashi (0.55)

.

Rimasharanki rimacharanki (0.14),
Rimacharanki (0.07),
rimacharanku (0.21),
rimacharankis (0.21),
rimacharankim (0.21),
Rimacharanku (0.14)

Imashashunchik (0.57) Rimasharqanki (0.08) ‗expected‘,
Rimashawanki (0.08),
Khashkarimunki (0.54),
Kimsancharinki (0.38),
Rimarichinki (0.54),
Rankhayarimunki (0.69)

Rimasharankin rimacharanki (0.2),
rimacharankis (0.2),
rimacharankim (0.2),
Rimacharanki (0.13),
Rimacharankis (0.13),
Rimacharankim (0.13)

Imashashunchik (0.57) Kimsancharin (0.47),
Rankhayarin (0.47)

Rimasharankiraq rimacharankiraq (0.12),
Rimacharankiraq (0.06),
rimacharankitaq (0.18),
Rimacharankitaq (0.12),
rimacharankuraq (0.18),
Rimacharankuraq (0.12)

Imashashunchik (0.71) Rankhayarimuy (0.63)

Rimasharankiraqmi Rimacharankiraqmi (0.05),
rimacharankiraqmi (0.11),
rimacharankiraqmá (0.21),
Rimacharankiraqmá (0.16),
rimacharankiraqsi (0.16),
rimacharankiraqri (0.16)

Imashashunchik (0.86) Marankiru (0.56)

Rimasharankiraqchu Rimacharankiraqchu (0.05),
rimacharankiraqchu (0.1),
rimacharankiraqchá (0.2),
rimacharankiraqchus (0.15),
rimacharankiraqcha (0.15),
rimacharankiraqchum (0.15)

Imashashunchik (0.86) Charancharimuychu (0.63)

Rimasharankiraqchusina Rimacharankiraqchusina (0.04),
rimacharankiraqchusina (0.08),
rimacharankiraqchusuna (0.13),
Rimacharankiraqchusuna (0.08),
rimacharankitaqchusina (0.13),
Rimacharankitaqchusina (0.08)

Imashashunchik (1) Wariwiraqocharunasina (0.61)

UIGV
29COMTEL 2014

VI Congreso Internacional de Computación y Telecomunicaciones

COMTEL 2014
VI Congreso Internacional de Computación y Telecomunicaciones 25

Suggestion Edit Rate (SER) measures the amount of
editing that a human would have to perform to change a
system output (a spell checking suggestion) so it exactly
matches a reference word. We calculated the value using
equation 2.

)(exp
),(tan_

ectedlength
suggestionoriginalcediseditSER (2)

Where original is the word to be spell checked,
suggestion is the output from the spell checking engine
and expected is the referenced word.

In Figure 5 we present SER values for each misspelling
(we calculated the average SER value when there are
more than one suggestion), if the quality of the suggestion
are good the SER value ought to be low, otherwise a high
one. It becomes evident that the quality of the suggestions
by ec_hunspell and bol_myspell, Hunspell and MySpell
respectively are poor, because they do not cope well with
complex words.

Figure 5. Suggestion Edit Rate.

7.2. Improving (Error Model) spell checking
quality

7.2.1. Improving Spell Checking Suggestion
Quality

The misspelled morpheme in the test words (rimasha-) in
Table 1 is the suffix -sha, that should be spelled -chka in
the unified standard. The Edit Distance between sha and
chka is 2 (delete k, substitute s with c). As the spell
checker uni_simple_foma relies on Minimum Edit
Distance as the only error metric, it will first suggest
Quechua words with a smaller edit distance, e.g. with the
suffixes -sqa or -cha (edit distance to -sha is 1).

From the results in Table 1 it becomes clear that using
edit distance as the only algorithm to find the correct
suggestions is not good enough. For this reason, we built
the improved version of the spell checker
uni_extended_foma: This back end uses several
cascaded finite state transducers that employ a set of
rewrite rules to produce more useful suggestions. For
instance, the suffix -sha will be rewritten to the
corresponding form in the standard, -chka. Furthermore,
we included a Spanish lexicon of nouns/adjectives and
verbs into the spell checker. This allows the correction of

words with Spanish roots and Quechua suffixes (very
frequent in Quechua texts)26.

Table 2 illustrates the quality of the suggestions with this
improved approach, the results are encouraging as SER
values are low, see Figure 6, this results compared with
its counterparts are much better, see Figure 7.

Moreover uni_extended_foma presents us with the
correct alternatives for every test word (see Table 2).

Table 2. The suggestions and SER values provided by
uni_extended_foma.

Term (Cuzco Quechua) uni_extended_foma
Rimay .
Rimanki .
Rimashanki rimachkanki

(0.27) ‗expected‘
Rimasharanki rimachkarqanki

(0.29) ‗expected‘
Rimasharankin rimachkarqankim

(0.33) ‗expected‘
Rimasharankiraq rimachkarqankiraq

(0.24) ‗expected‘
Rimasharankiraqmi rimachkarqankiraqmi

(0.21) ‗expected‘
Rimasharankiraqchu rimachkarqankiraqchu

(0.20) ‗expected‘
Rimasharankiraqchusina rimachkarqankiraqchusina

(0.17) ‗expected‘

Figure 6. Graphical interpretation of the SER values for

the suggestions provided by uni_extended_foma

Figure 7. Suggestion Edit Rate for uni_extended_foma

in contrast with the others.

26The Spanish lexicon has been built with part of
FreeLing, an open source library for language processing,
see http://nlp.lsi.upc.edu/freeling/

UIGV
30 COMTEL 2014

VI Congreso Internacional de Computación y Telecomunicaciones

COMTEL 2014
VI Congreso Internacional de Computación y Telecomunicaciones 26

7.3. Improving CGI Program's Speed
Response
The first implementation of our application (see Section
6.2.1, SS02: Spell check input terms) was fast enough for
the web service, the lookup tool could load the spell
checker consisting of only one transducer of
approximately 2MB very quickly.

However, this is not the case for the cascaded transducers
of the improved version uni_extended_foma, for which
the same lookup takes 40 to 60 seconds for a group of 6 to
10 words. This results in a deficient and slow web
application. In order to overcome the slow response with
the extended spell checker, we re-implemented the lookup
module as a TCP server-client application.

We measured the time with both approaches on our server
for a single word. The standard lookup took 4.434
seconds, whereas with the TCP server-client, the lookup
took only 0.021 seconds.

Figure 8. Speed response (measured in seconds)

comparison between the two implementations Command
Line - Batch Mode and TCP Server.

As illustrated in Figure 8, the response time of the TCP
service is 0.021 seconds, as compared to 4.434 seconds
with the regular lookup. Using the TCP sever-client thus
solves the problem for the web service.

8 Conclusions and Future Work
We integrated existing spell checkers for Quechua into an
easy to use web application with functionalities
comparable to a desktop program. Furthermore, we
improved the spell checker back end by using a more
fine-grained set of rules to predict the correct suggestion
for a given word form.

Additionally, we implemented a TCP server-client lookup
for finite state transducers written in Foma, in order to
mitigate the low response time for the enhanced spell
checker.

In order to further improve our spell checker, we collect
the unknown words from the web service in an error
corpus, which gives us an indication for missing lexicon
entries or missing morpheme combinations.

The Foma spell checkers described in this paper are
already available as plug-ins to OpenOffice and
LibreOffice, and we are currently working on a version
for MS Office programs.

References
[AdelaarMuysken04] Adelaar, W. F. H. and Muysken, P.

(2004). The Languages of the Andes. Cambridge
Language Surveys. Cambridge University Press.

[BeesleyKarttunen03] Beesley, K. R. and Karttunen, L.
(2003). Finite-state morphology: Xerox tools and
techniques. CSLI, Stanford.

[Cerrón-Palomino94] Cerrón-Palomino, R. (1994).
Quechua sureño, diccionario unificado quechua-
castellano, castellano-quechua. Biblioteca Nacional
del Perú, Lima.

[Dembitz2011] Dembitz, v., Randić, M., and Gledec, G.
(2011). Advantages of online spellchecking: a
Croatian example. Software: Practice and Experience,
41(11):1203–1231.

[Hulden2013] Hulden, M., Silfverberg, M., and Francom,
J. (2013). Finite state applications with Javascript. In
Proceedings of the 19th Nordic Conference of
Computational Linguistics (NODALIDA 2013);
Linköping Electronic Conference Proceedings,
volume 85, pages 441–446.

[Liang2009] Liang, H. L. (2009). Spell checkers and
correctors: a unified treatment. Master‘s thesis,
Universiteit van Pretoria.

[MacCaw2011] MacCaw, A. (2011). JavaScript Web
Applications. O‘Reilly Media, Inc.

[Paredes-Cusi2009] Paredes Cusi, B. (2009). Qheswa
Simi, Lengua Quechua. Editorial Pantigozo, Cuzco,
Perú.

[Rios2011] Rios, A. (2011). Spell checking an
agglutinative language: Quechua. In Proceedings of
the 5th Language and Technology Conference:
Human Language Technologies as a Challenge for
Computer Science and Linguistics, Poznań, Poland.

