TÉCNICA DE ARCO SEGMENTADO

TRABAJO MONOGRÁFICO PARA OBTENER EL TÍTULO DE
ESPECIALISTA EN ORTODONCIA

AUTOR:
CD. Evelyn Roxana Paredes Martínez

LIMA – PERÚ
2018
Dedico el presente trabajo a mis hijas
que en todo momento me han
brindado su compañía
y amor incondicional
TÉCNICA DE ARCO SEGMENTADO
ÍNDICE DE CONTENIDO

INTRODUCCIÓN ... 1
TÉCNICA DE ARCO SEGMENTADO 2
 1. Generalidades ... 2
 2. Principios mecánicos que rigen la técnica 2
 3. Materiales empleados en la técnica de arco segmentado 5
 4. Fases de tratamiento de la técnica de arco segmentado 7
 5. Dispositivos empleados en la técnica de arco segmentado 8
CONCLUSIONES .. 45
REFERENCIAS BIBLIOGRÁFICAS 46
ANEXOS .. 50
<table>
<thead>
<tr>
<th>FIGURA</th>
<th>Págs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No 01. Representación de una fuerza</td>
<td>3</td>
</tr>
<tr>
<td>No 02. Principio de transmisibilidad</td>
<td>3</td>
</tr>
<tr>
<td>No 03. Representación de la resultante de fuerzas</td>
<td>4</td>
</tr>
<tr>
<td>No 04. Ejemplos de mecánica estáticamente determinada</td>
<td>4</td>
</tr>
<tr>
<td>No 05. Tubo triple de primera molar superior</td>
<td>5</td>
</tr>
<tr>
<td>No 06. Tubo doble de primera molar inferior</td>
<td>6</td>
</tr>
<tr>
<td>No 07. Caja lingual</td>
<td>6</td>
</tr>
<tr>
<td>No 08. Tubo accesorio de Marcotte</td>
<td>7</td>
</tr>
<tr>
<td>No 09. Desactivación del sistema de fuerzas del cantilever</td>
<td>9</td>
</tr>
<tr>
<td>No 10. Verticalización de molar</td>
<td>10</td>
</tr>
<tr>
<td>No 11. Cantilever para corrección de rotación de canino</td>
<td>11</td>
</tr>
<tr>
<td>No 12. Control del cantilever luego de 2 meses</td>
<td>11</td>
</tr>
<tr>
<td>No 13. Control del cantilever luego de 5 meses</td>
<td>12</td>
</tr>
<tr>
<td>No 14. Cantilever corto anclado en bracket de canino</td>
<td>12</td>
</tr>
<tr>
<td>No 15. Extensión del cantilever</td>
<td>13</td>
</tr>
<tr>
<td>No 16. Secuencia de dos cantilevers guiando los caninos</td>
<td>13</td>
</tr>
<tr>
<td>No 17. Tres configuraciones de cantilever verticalmente activados</td>
<td>16</td>
</tr>
<tr>
<td>No 18. Cantilever curvo insertado en el tubo molar</td>
<td>17</td>
</tr>
<tr>
<td>No 19. Arco lingual con arco labial</td>
<td>19</td>
</tr>
<tr>
<td>No 20. Acción del arco lingual de acero</td>
<td>19</td>
</tr>
<tr>
<td>No 21. Diferencia de acción del arco lingual y labial</td>
<td>20</td>
</tr>
<tr>
<td>No 22. Caja lingual</td>
<td>21</td>
</tr>
</tbody>
</table>
No 23. Arco transpalatino maxilar
No 24. Arco lingual en herradura
No 25. Arco lingual
No 26. Arco lingual bajo sin contacto de incisivos
No 27. Ansa rectangular
No 28. Dimensiones del ansa rectangular
No 29. Primer doblez en la confección del ansa
No 30. Segundo doblez en la confección del ansa
No 31. Tercer doblez en la confección del ansa
No 32. Cuarto doblez en la confección del ansa
No 33. Ansa rectangular pasiva
No 34. Ángulos del ansa rectangular
No 35. Ansa rectangular y sus hastes
No 36. Ángulos del ansa rectangular
No 37. Activación para intrusión
No 38. Activación para extrusión
No 39. Activación para distalización de raíz
No 40. Ansa rectangular y hastes para activación
No 41. Simulación de movimiento de Geometría IV
No 42. Activación doblando el haste A con Geometría IV
No 43. Fuerzas y momentos en Geometría IV
No 44. Ansa activada en Geometría IV
No 45. Ansa activada en Geometría V
No 46. Fuerzas y momentos en Geometría V
No 47. Simulación de movimiento en Geometría VI
No 48. Ansa rectangular activada en Geometría VI 38
No 49. Fuerzas y momentos en Geometría VI 38
No 50. Ansa rectangular instalada en Geometría VI 39
No 51. Arco de intrusión 40
No 52. Arco de intrusión de tres piezas 41
No 53. Corrección de sobremordida profunda asimétrica 42
No 54. Ansa en T de retracción sin activaciones 43
No 55. Ansa en T de retracción con doblez de preactivación 42
No 56. Ansa en T de retracción después de la instalación 44
RESUMEN

Los cambios dentofaciales son logrados por el ortodoncista aplicando fuerzas a los dientes, al periodonto y al hueso alveolar. Las bases científicas de la ortodoncia es la física y la mecánica siguiendo las leyes de Newton aplicada a los sistemas biológicos.

La técnica de arco segmentado ha sido empleada desde 1962 para realizar movimientos en piezas consideradas a ser usadas como piezas de anclaje durante el tratamiento de ortodoncia.

Las bases de la técnica de arco segmentado se rigen por la mecánica para predecir los movimientos dentarios y con ello solucionar por segmentos los problemas específicos.

Al actuar de forma segmentada como su nombre lo dice, permite solucionar los problemas por grupos de dientes, evitando que el efecto no deseado se exprese en su totalidad. Es así que no emplea arcos continuos de níquel titanio o acero inoxidable como se suele utilizar en la técnica de arco continuo, sino que en lugar de ello, emplea arcos de Beta titanio que permiten realizar dobleces sin que el alambre pierda sus propiedades mecánicas.

En la técnica de arco segmentado se emplean dispositivos como cantilevers, arco lingual, arco transpalatino, ansa rectangular y arco de intrusión, los cuales juntos o de forma separada van a lograr obtener el movimiento planificado. Además de ello, se requiere accesorios para utilizar los dispositivos mencionados. Los materiales accesorios empleados son los tubos vestibulares, cajas linguales y tubos de Marcotte en donde se insertan los dispositivos para lograr el movimiento planificado en busca de la resolución de la maloclusión.

Palabras clave: Ortodoncia, Biomecánica, Arco segmentado, Cierre de espacio ortodóntico, Ortodoncia Correctiva.
ABSTRACT

Dentofacial changes are corrected by the orthodontist after applying forces to the teeth, the periodontal ligament and the alveolar bone. Scientific background for orthodontic approaches rely on physics and mechanics following Newton’s laws applied on biological systems.

The segmented arch technique has been used since 1962 to generate movement of teeth considered to anchorage elements during an orthodontic treatment.

The foundations of the segmented arch technique are regulated by the mechanics to predict teeth movement and with that solve the specific problems segment by segment.

Acting on a segmented manner, allows to solve problems by groups of teeth, preventing the undesired effect to manifest completely. In that manner, continuous Ni-Ti or steel wires are not used as is traditionally applied with the continuous arch technique, instead, uses Beta-titanium wires that allow to create bends that would not affect the mechanical properties of the material.

The segmented arch technique uses devices such as cantilevers, lingual arch, transpalatal arch, rectangular loops, and intrusion arches, which together or separately would generate the planned movements. Besides, accessories are needed to use each device aforementioned. The accessory materials used are buccal tubes, lingual boxes and Marcotte tubes where the devices are inserted and generate the planned movements seeking to solve the malocclusion.

Key words: Orthodontics, Biomechanics, Segmented arch, Orthodontic space closure, Corrective Orthodontics.
RESUMO

As alterações dento-faciais são corrigidas pelo ortodontista após a aplicação de forças nos dentes, no ligamento periodontal e no osso alveolar. Os antecedentes científicos para abordagens ortodônticas dependem da física e mecânica seguindo as leis de Newton aplicadas em sistemas biológicos.

A técnica do arco segmentado tem sido utilizada desde 1962 para gerar movimento de dentes considerados em elementos de ancoragem durante um tratamento ortodôntico.

Os fundamentos da técnica do arco segmentado são regulados pela mecânica para prever o movimento dos dentes e com a resolução dos problemas específicos segmento por segmento.

Atuando de forma segmentada, permite resolver problemas por grupos de dentes, evitando que o efeito indesejável se manifeste completamente. Dessa forma, não são usados o Ni-Ti contínuo ou os fios de aço, como é tradicionalmente aplicado com a técnica do arco contínuo, em vez disso, usa fios de titânio Beta que permitem criar curvas que não afetariam as propriedades mecânicas do material.

A técnica do arco segmentado utiliza dispositivos como cantilevers, arco lingual, arco transpalatal, laços retangulares e arcos de intrusão, que juntos ou separadamente gerariam os movimentos planejados. Além disso, são necessários acessórios para usar cada dispositivo acima mencionado. Os materiais acessórios utilizados são os tubos bucais, as caixas lingual e os tubos Marcotte onde os dispositivos são inseridos e geram os movimentos planejados que buscam resolver a má oclusão.

Palavras-chave: Ortodontia, Mecânica, Técnica do arco segmentado, Fechamento de espaços, Ortodontia corretiva.
INTRODUCCIÓN

La estética cada vez más ocupa un papel protagónico en los tratamientos odontológicos. Los pacientes aspiran a tener una sonrisa agradable y para ello tenemos como primera opción a la ortodoncia.

La alta casuística de maloclusiones que se evidencia en nuestro país hace que sea necesario mejorar las técnicas para el tratamiento de ortodoncia, optimizando el tiempo y la aparatología a emplear en los pacientes.

En Ortodoncia existen muchas prescripciones de brackets que a lo largo del tiempo van evolucionando; tanto en el diseño de la aparatología, tamaño y forma del bracket, en la tecnología que se incorpora para que sea de ligado propio, para que tenga una estructura de malla que permita mayor adhesión y hasta en el diseño que sea amigable y confortable para el paciente. El uso de todas estas prescripciones preconiza el emplear los brackets posicionados en las piezas dentarias y mediante el uso de arcos continuos de Níquel Titanio y acero inoxidable.

Sin embargo, existe una técnica de tratamiento en ortodoncia, la cual ha sido desarrollada en 1962, que actualmente es empleada sólo por algunos ortodoncistas debido a que no es muy difundida. Esta técnica permite conseguir los objetivos de tratamiento de casos complejos en el menor tiempo posible, empleando cualquier tipo de prescripción y mediante el uso de dispositivos específicos para resolver problemas biomecánicamente complejos a través del uso de arco segmentado.

Por lo manifestado, el presente trabajo tiene como finalidad brindar información respecto a la técnica de arco segmentado para que pueda ser más conocida, comprendida y sea de aplicación clínica en beneficio de los pacientes.
TÉCNICA DE ARCO SEGMENTADO

1. Generalidades

La técnica de arco segmentado fue descrita por Charles Burstone en el año 1962.1,2 La técnica de arco segmentado consiste en una secuencia de procedimientos siguiendo los principios biomecánicos que propone la mecánica, en busca de utilizar fuerzas continuas para lograr el movimiento dentario sin perder el control de la pieza.3,4

Esta técnica se basa en la “segmentación” lo que permite trabajar con grupos de dientes como si fuesen una unidad pero al ser un grupo de dientes poseen mayor porción radicular. Al realizar la segmentación se logra reconocer una unidad activa y otra conocida como reactiva.5,6

2. Principios mecánicos que rigen la técnica

La mecánica es el campo de la física que se encarga del estudio de las fuerzas. La mecánica puede ser subcategorizada en estática, cinética y materia de ciencia. La estática lidia con una fuerza en un cuerpo a velocidad constante, incluyendo el estado de reposo. La cinética lidia con la fuerza en un cuerpo con aceleración. La materia de ciencia lidia con el efecto de las fuerzas sobre los materiales.7,8,9

Las leyes clásicas que explican la relación entre la fuerza y los cuerpos fueron presentadas por Newton en el año 1686. La ley de la inercia (primera ley de Newton) describe los cuerpos en reposo o cuerpos con velocidad uniforme. Un objeto en reposo tiende a quedarse en reposo, y un objeto en movimiento tiende a estar en movimiento con la misma velocidad y en la misma dirección a menos que actúe sobre el objeto una fuerza desbalanceada. Esta es la ley que se considera más importante en ortodoncia, ya que es la base de las aplicaciones del concepto de equilibrio.1,10 La ley de la aceleración (segunda ley de Newton) dice que cuando se aplica una fuerza a un objeto, se acelera proporcionalmente a la cantidad de fuerza aplicada. La ley de acción y reacción (tercera ley de Newton) dice que por cada acción existe una reacción igual y opuesta.1,11,12
Dentro de las características de la fuerza, se considera que ésta tiene tres componentes: magnitud, dirección, sentido y punto de aplicación. La magnitud de la fuerza se da en gramos. La dirección de la fuerza es definida por su línea de acción. Esta dirección se refiere como sentido.\(^{12}\)

FIGURA No 01
Representación de una fuerza

El principio de transmisibilidad es aquel que rige la aplicación de las fuerzas. Establece que dos fuerzas tienen el mismo efecto si tienen la misma intensidad y la misma línea de acción. Una fuerza puede ser movida a lo largo de su línea de acción sin cambiar su efecto.\(^{1,13,14}\)

FIGURA No 02
Principio de transmisibilidad

El principio de acción y reacción establece que un cuerpo ejerce una fuerza en otro cuerpo, éste responde ejerciendo una fuerza de igual intensidad, misma dirección y sentido opuesto que el primer cuerpo. La acción de varias fuerzas sobre un cuerpo puede ser substituida por la
resultante, que es obtenida a través de la adición vectorial. La resultante de acción de ambas fuerzas con un mismo punto de aplicación es determinada por el método del paralelogramo. ¹,¹³

Fuente: Sakima M¹

FIGURA No 03
Representación de la resultante de fuerzas

El principio de aparatos estáticamente determinados es el que rige algunos dispositivos empleados dentro de la técnica de arco segmentado. De acuerdo a la primera ley de Newton, la suma de todas las fuerzas y momentos actuando en un ambiente cerrado deben ser igual a cero. \(\sum F = 0\) \(\sum M = 0\). En un diagrama de cuerpo libre incluyendo dos unidades dentarias, el uso de estas fórmulas permite el cálculo de del sistema de fuerza total en ambas unidades si el sistema de fuerza es completamente conocido por uno de ellos en cualquier lugar. En el ambiente clínico, donde sólo las fuerzas pero no los momentos pueden ser medidos, el sistema de fuerza total puede ser determinado estáticamente. Es posible clasificar la mecánica estáticamente determinada diferenciada donde sólo las fuerzas son conocidas (y los momentos son desconocidos), dependiendo en la localización y orientación de la línea de acción. ¹,¹⁵

Fuente: Burstone Ch¹⁴

FIGURA No 04
Diferentes ejemplos de mecánica estáticamente determinada
Los sistemas biomecánicos estáticamente determinados permiten medir con exactitud y calcular el total del sistema de fuerza en todas las unidades en donde se han aplicado. Para estimar la el efecto del aparato, es necesario transferir esas fuerzas como sistema de fuerzas equivalentes para la posición estimada del centro de resistencia (CR) de cada unidad, donde una fuerza y posiblemente un momento, podrían actuar. De esta forma, se puede predecir el movimiento dentario en ortodoncia.

3. Materiales empleados en la técnica de arco segmentado

3.1 Tubos vestibulares

Los tubos que se emplean en las bandas soldados en la zona de vestibular de primeras molares superiores son tubos triples convertibles. Tienen una canaleta de 0.022"x0.028" en donde ingresará el arco principal. Tiene además un tubo accesorio de 0.017"x0.025" ubicado hacia cervical que sirve para el uso de dispositivos de ortodoncia como ansas o cantilevers y un tercer tubo de 0.045" por oclusal para el uso de aparatoología extraoral.

Fuente: Sakima M

FIGURA No 05
Tubo triple de primera molar superior

Los tubos que se emplean en las primeras molares inferiores soldados en la zona vestibular de las primeras molares inferiores son tubos dobles convertibles. Tienen una canaleta de 0.022"x0.028" y un tubo accesorio hacia cervical.

1,13
3.2 Cajas linguales

Las cajas linguales se utilizan en las primeras molares superiores e inferiores. Sirven de apoyo para los arcos linguales y arcos transpalatinos. Son cajas de 0.036” x 0.072” en donde se introducen los dispositivos confeccionados con alambre redondo de 0.032” ó 0.036”.

Fuente: Sakima M

FIGURA No 07
Caja lingual
3.3 Tubos de Marcotte

Es un segmento de tubo rectangular de 0.022”x0.028” de 2 mm soldado perpendicular y centralmente a otro segmento del mismo tamaño e introducido a un segmento de arco anterior como los caninos e incisivos laterales. Estos tubos proporcionan distancias mayores entre segmentos lo cual mejora el control del movimiento de los segmentos. El uso de estos tubos permite que para la técnica de arco segmentado se pueda emplear cualquier prescripción de brackets. 9

Fuente: Sakima M1

FIGURA No 08
Tubo accesorio de Marcotte

3.4 Alambres de B- Ti

La aleación B titanio conocida como aleación de titanio molibdeno o TMA, tiene propiedades de alta recuperación, menor dureza la ser comparada con el acero, alta deformabilidad y la capacidad de ser soldado sin perder su resiliencia y además de ello es resistente a la corrosión. Esta aleación permite ser deformado dos veces sin sufrir deformación permanente. Además libera fuerzas que corresponden a aproximadamente la mitad de las fuerzas liberadas por aleaciones de acero bajo activaciones similares lo cual causa que la razón de proporción carga/ deflexión sea aproximadamente la mitad de la proporción del acero. 17,18

4. Fases de tratamiento de la técnica de arco segmentado

4.1 Alineamiento y Nivelación

Es considerada la primera fase de la técnica de arco segmentado. En esta etapa se corrigen las posiciones de los dientes que luego servirán como piezas de anclaje para continuar el tratamiento de ortodoncia. De acuerdo a las características del paciente, en esta etapa se deberá realizar la
verticalización de molares y/o caninos, tracción de dientes incluidos, corrección de giroversiones severas, mordidas cruzadas posteriores.¹,⁹,¹²

4.2 Nivelación entre arcos

Es considerada la segunda fase del tratamiento con la técnica de arco segmentado. La nivelación entre los segmentos se logra con un arco de intrusión acompañado de cantilevers, arco transpalatino o un arco lingual. Se consideran cuatro opciones para corregir una mordida profunda: intrusión verdadera de los dientes anteriores, vestibularización de los dientes anteriores, extrusión de las piezas posteriores o una combinación de ambas.¹,⁹,¹²

4.3 Cierre de espacios

Cuando se realizan extracciones planificadas para el tratamiento de ortodoncia, se puede elegir entre tres tipos de cierre de dichos espacios: con anclaje máximo, anclaje moderado o anclaje mínimo.¹²

En el anclaje máximo se realiza la retracción anterior con control de la unidad de anclaje de tal forma que la unidad de anclaje no contribuya al cierre de espacios.¹,⁹

En el anclaje moderado existe una combinación con la retracción de anterior y la protracción de los dientes posteriores.¹,⁹

En el anclaje mínimo se realiza una protracción de los dientes posteriores manteniendo el segmento anterior en su posición.¹,⁹

4.4 Finalización

Es la última fase del tratamiento de ortodoncia y busca lograr el engranaje de las piezas dentarias obteniéndose contactos oculares homogéneos. Se logra obtener los contactos deseados en los movimientos de excursión mandibular. En esta fase se emplean arcos continuos con la ayuda de elásticos intermaxilares.¹⁴,¹⁹

5. Dispositivos empleados en la técnica de arco segmentado

5.1 Cantilevers

Un cantilever es un segmento de alambre de ortodoncia en el que un extremo va a ingresar a un bracket o tubo o es incluido en el acrílico de un aparato removible y el otro va a ser atado o enganchado a otra unidad por un punto de contacto.¹,²⁰
Con un cantilever se puede calcular el sistema de fuerzas presente en ambas unidades, considerando la longitud del mismo y la cantidad de fuerza liberada.

Un cantilever se construye generalmente de un segmento de alambre Beta titanio

Sus usos incluyen la tracción, intrusión, inclinación vestibular y lingual de piezas dentarias. La activación de este dispositivo permite la liberación de fuerzas leves y constantes, sin mucha alteración del sistema de fuerzas durante la desactivación o el movimiento de un elemento activo.

Como con cualquier aparato estáticamente determinado, al usar un cantilever el ortodoncista puede fácilmente calcular el sistema de fuerza midiendo la activación de la fuerza, identificando el punto de contacto y determinando la distancia entre el sitio de enganche del alambre y el punto de ligado, medido perpendicular a la línea de acción de la fuerza.

Un ejemplo de ello es lo que se observa en la figura 09

El sistema de fuerza biomecánico generado por un cantilever es caracterizado por una combinación de un momento y una fuerza en la unidad en donde el cantilever es insertado, mientras sólo una fuerza única es desarrollada con respecto al punto de aplicación de la fuerza del otro extremo terminal. Este sistema de fuerza debe ser expresado con respecto al estimado centro de resistencia (CR) de cada unidad dental para predecir el movimiento dentario. La magnitud de las dos fuerzas son iguales y opuestas, de acuerdo a la primera ley de Newton y la activación de la fuerza puede ser medida con un dinamómetro. El valor del momento es igual a la distancia entre el sitio de enganche completo y del sitio donde existe un solo punto de contacto, medido perpendicularmente a la línea de acción de la fuerza producida, multiplicado por la fuerza.

\[M = F \times d \]

En el tratamiento de ortodoncia, los cantilevers pueden ser utilizados en todos los planos del espacio, y pueden ser aplicados tanto bucalmente como por palatino.
Dentro de las indicaciones se consideran útiles para el control de la posición labiolingual de incisivos y caninos, posición bucolingual de las molares y premolares, rotaciones, posiciones verticales, extrusiones o intrusiones de incisivos laterales o dientes anteriores y verticalización de molares. 22,23

Una característica importante de la mecánica de cantilever es la generación de un sistema de fuerza con un alto grado de constancia en el tiempo y a través de la desactivación. Las fuerzas y momentos en los dos extremos mantienen su dirección y decrecen proporcionalmente a la desactivación del cantilever. Además, existe un alto grado de constancia de la proporción momento fuerza: (M/F ratio) con respecto al bracket. Esto también significa movimiento dental homogéneo con un centro de rotación relativamente estable. (CRot). 14,23

5.1.1. Diseño

Al considerar el uso de cantilever se debe determinar el movimiento que se desea lograr con el cantilever y como consecuencia el sistema de fuerzas que ese cantilever debe llevar a la unidad dentaria activa. Diferentes estudios experimentales han descrito las relaciones entre el sistema de fuerzas y el movimiento dentario. Basados en esta información, el sistema de fuerza puede ser estimado considerando el lugar donde el CRot del movimiento necesario debe ser localizado y desde allí se estima la única fuerza necesaria para para representar el sistema de fuerzas. 24,25

Una vez que la fuerza necesaria para un movimiento específico ha sido establecida, una idea general de la forma del cantilever puede ser fácilmente imaginada por el ortodoncista, con referencia del punto en donde una sola fuerza es generada por el cantilever. El punto donde el cantilever es ligado en un solo punto de contacto deberá yacer junto a la línea de acción de la fuerza única necesaria. 14,24

![FIGURA No 10](no disponible)

Fuente: Burstone Ch 14

FIGURA No 10

A: Enderezar la molar con la mínima extrusión del CR.

B: Mayor extrusión de la molar es requerida con el CRot localizado a 6mm del CR.
Los sistemas de fuerza que se requieren son expresados en el CR y en el sistema de fuerza equivalente. En el CR, se tiene un momento y una fuerza y una proporción M/F que está relacionado a la distancia entre el CRot y el CR; la posición del vector de la única fuerza equivalente a este sistema indica la posición del único punto de contacto del cantilever. De acuerdo a los principios biomecánicos, existen unas consideraciones respecto a la proporción M/F en el bracket de la unidad activa.

Si se desea rotación pura o inclinación (M/F en el CR debe ser infinito), o un movimiento en donde el componente de traslación es clínicamente insignificante, se deberá usar un cantilever tan largo como sea posible, insertado en el slot de la unidad activa, y atado con un punto de contacto único a la unidad reactiva.

FIGURA No 11
Cantilever para corrección de rotación del canino izquierdo superior

FIGURA No 12
Control del cantilever luego de 2 meses
Si una combinación de rotación o inclinación con traslación es deseada, se deberá usar un cantilever corto (su longitud debe ser aproximadamente igual a la proporción deseada M/F en el bracket) insertado en la unidad activa.

Si la proporción M/F que se requiere es menor (< 10mm), se inserta el cantilever a la unidad reactiva y se liga a un brazo de poder, extendiéndolo desde el bracket de la unidad activa como se ve en la fig 15 y 16.
FIGURA No 15
Extensión del cantilever

FIGURA No 16
A – D: Secuencia de dos cantilevers guiando los caninos del maxilar a su posición correcta

Otras configuraciones especiales de cantilever deberán ser adoptadas para reducir la proporción de carga- deflexión y para unir el cantilever en la unidad activa.
Si la proporción M/F de 0 es necesaria en el bracket, se debe insertar el cantilever en la unidad reactiva y ligarla al bracket de la unidad activa. Esta clasificación no incluye casos en donde no hay unidad reactiva y el sistema de fuerza es deseable en ambas unidades.25,26

5.1.2. Selección de alambre
Hay muchas consideraciones que se deben tener para la selección de un alambre para confeccionar un cantilever. El alambre debe ser fácil de conformar, excluyendo por lo tanto al Níquel-titánio por su pobre capacidad de conformación. La proporción carga deflexión de un cantilever, así como para todos los elementos activos de un aparato, debe ser la menor posible, dejando el sistema de fuerzas con un alto grado de constancia. La carga deflexión de un cantilever depende de los siguientes factores: la distancia entre el sitio de enganche y el único punto de contacto (longitud del cantilever), rigidez del alambre y configuración del alambre. 24,26

La longitud del cantilever será decidida por la necesidad del sistema de fuerza de la unidad activa, el alambre debe ser seleccionado en base a los siguientes factores: La rigidez del alambre debe permitir una proporción aceptable de carga deflexión para la longitud del cantilever dada. El alambre debe tener un momento de rendimiento (el momento causando una deformación permanente el 1% del cantilever) lo suficientemente alto para la generación de fuerzas y momentos necesarios para la longitud de cantilever dada.14,24
De acuerdo a estas consideraciones, se indican los siguientes alambres, de acuerdo a la longitud del cantilever y a la necesidad de una magnitud de fuerza específica.14,24

-Cantilever corto (10 a 15 mm)
Un alambre con baja rigidez como un redondo de 0.018” Beta titanio será apropiada para obtener un buena proporción carga-deflexión. Sin embargo, este alambre se desliza en el bracket o tubo, a menos que su activación sea paralela a la orientación de tubo y bracket (activación mesiodistal para un tubo horizontal). Para prevenir que este alambre se deslice, este alambre debe ser soldado a un pequeño trozo de alambre rectangular Beta titanio (0.017 x0.025”) que se insertará en el tubo o bracket. Este tipo de cantilever es llamado cantilever compuesto. El momento de rendimiento de 0.018” Beta Titanio es 1450 gmm, deformándose permanentemente con 145 g de activación si la longitud es de 10mm. Esta fuerza de activación es usualmente suficiente para para la mayoría de movimientos dentales.14,27
El alambre rectangular 0.016 x 0.022” de Beta titanio puede ser usado para cantilever que no son extremadamente cortos si se acepta una proporción alta de carga deflexión. En esos casos, se debe recordar que el alambre rectangular tiene una rigidez doble dependiendo en la geometría
seccional. Por esta razón, cuando un cantilever requiere la activación buco lingual, se debe hacer un doblez de 90 grados del alambre inmediatamente cerca al bracket de inserción para disminuir su rigidez.22,28

-Cantilever medio (16 a 24 mm)
La mayoría de cantilevers están incluidos en este rango. Para estas longitudes, se 0.017 x 0.025 Beta titanio. Esta porción de alambre tiene la gran ventaja de tener libertad muy limitada para deslizarse en el slot o tubo. Un cantilever típico de 20mm corresponde a una distancia común entre el tubo de molar y el bracket de canino, puede llevar 150 g de activación bucolingual antes de llegar a su deformación permanente. Si se desea la reducción carga-deflexión al hacer la activación buco lingual, se debe doblar en 90 grados el alambre, lo cual reduce la rigidez del alambre en un 50% ya que los alambres rectangulares tienen diferente rigidez dependiendo del plano de activación.14,24

-Cantilever largo (de 25 mm a más)
Un aumento en la longitud del cantilever reduce dramáticamente en la proporción carga-deflexión, sin embargo, para cantilevers largos, los momentos generados a un extremo del alambre son muy altos y la deformación permanente del alambre puede ser un problema. Por esta razón, si se necesitan fuerzas pequeñas (50g y menos), se recomiendan alambres de 0.017 x 0.025" Beta titanio.14,15,24

5.1.3. Configuración
La configuración de un cantilever puede ser alterada por dos propósitos principales: reducir la proporción de carga-deflexión o modificar la línea de acción de la fuerza cambiando su angulación.14,15

-Reducción de la carga deflexión
Cuando se requiere la reducción de carga deflexión, una apropiada configuración puede lograr este objetivo agregándole alambre al cantilever. Hay dos formas de añadir alambre a un cantilever: con loops (dobleces) o con formas de dobleces en zigzag. Esta configuración también puede cambiar la dirección del vector de fuerza. Para reducir la proporción carga-deflexión, los loops deben estar orientados en un mismo plano de activación del cantilever, por esta razón, usualmente no se pueden usar para reducir la proporción de carga – deflexión de cantilevers bucales usando activaciones bucolinguales, porque una orientación biomecánicamente correcta del loop ocasionaría molestias al paciente. Sin embargo, los loops pueden ser fácilmente usados para reducir la proporción de carga deflexión en otras condiciones.14
Las formas con diseño en zigzag pueden ser más efectivas en reducir la proporción carga deflexión de los cantilevers porque pueden agregar una larga extensión de alambre a pesar que la distancia es limitada entre el punto de enganche y el único punto de ligado.

-Configuración de cantilever y la angulación del vector de fuerza

Los vectores de fuerza producidos por un cantilever lineal son orientados aproximadamente a la línea conectando el punto de enganche con el único punto de contacto del cantilever. Esta orientación y por lo tanto el movimiento de la unidad activa, puede ser modificado agregando una configuración al mismo cantilever. Las configuraciones pueden ser divididas en configuraciones menores y mayores; las configuraciones mayores también incluyen loops.

Configuraciones menores:

Es posible cambiar la orientación del vector de fuerza generado por una activación del cantilever. Los cantilevers pueden ser modelados con diferentes curvaturas que, una vez activados cambiarán su forma. Esta forma influenciará el comportamiento del cantilever, la cual expandirá o se va a contraer durante la desactivación, por lo que las fuerzas no son exactamente perpendiculares al eje axial estructural.

En un estudio realizado por Dalstra y Melsen, seis diferentes configuraciones de cantilever fueron analizados en un modelo de elementos finitos Entre ellas habían algunas configuraciones que deben ser consideradas menores, tres de estas están representadas en la fig 17.

Fuente: Burstone Ch

FIGURA 17

Tres configuraciones de cantilever en sus formas pasivas y verticalmente activadas
Se puede observar que una de las configuraciones lleva la fuerza perpendicular al eje estructural del cantilever mientras otras configuraciones tienen componentes de expansión o contracción. Si por ejemplo, los cantilevers son usados para aplicar fuerzas intrusivas a los dientes anteriores, la selección de una de las configuraciones u otra producirá diferentes componentes sagitales de fuerza a ser agregados al componente vertical. Por lo tanto, la selección determina si los dientes anteriores tendrán una fuerza vertical o será desplazados bucalmente o lingualmente.22,27

-Cantilevers con curvas mayores:
Estos cantilevers son empleados entre las molares y la zona de la línea media. Ellos tienen una curvatura en la zona de caninos y el eje estructural que es oblicuo en el plano oclusal. Este cantilever si se activa en el plano oclusal, automáticamente entrega una fuerza que tiene ambos componentes sagitales y transversales.12,14

\textbf{FIGURA No 18}

\textit{Cantilever curvo insertado en el tubo molar}

-Configuraciones mayores:
Si un loop es agregado al cantilever es posible tener activaciones separadas e independientes de dos partes del cantilever. Cuando estas activaciones son balanceadas, cualquier vector de fuerza puede lograrse.
Estos cantilevers pueden ser activados doblando el alambre cerca de la zona de enganche, donde un componente vertical y transverso se produce, y en el loop, donde se genera un componente de fuerza.12,29
Melsen y col, han publicado un análisis de elementos finitos de la mecánica de cantilevers con hélices en retracción anterior y en intrusión; sin embargo, estos cantilevers pueden ser usados para extrusiones y protrusión. Si son orientados en un plano distinto, pueden producir fuerzas transversas. Si los cantilevers son vistos desde la posición lateral, una posición oclusal del loop requiere una extensión apical desde el nivel del bracket (6 a 8mm) para aplicar la única fuerza. Este desplazamiento del vector de fuerza reduce la distancia del componente sagital desde el centro de resistencia (CR), reduciendo así el componente rotacional del movimiento.14,30

5.2. Arco lingual y Arco transpalatino

El arco lingual y arco transpalatino son componentes importantes de la técnica de arco segmentado. Se emplean apoyándose en las primeras molares ingresando en las cajas linguales. Son elaborados con alambres redondos de acero inoxidable ó TMA con un grosor de 0.9mm (0.036") o de 0.8mm (0.032").1,9,13
Se emplean para refuerzo de anclaje, el cual es considerado de uso pasivo, o para la corrección de la posición de las molares, siendo un uso activo.2,5
Para ser usados de anclaje el grosor que se emplea debe ser el mayor, siendo el de 0.9mm y no se debe realizar ninguna ansa en el diseño del arco.7,12
Cuando se van a emplear para realizar movimientos en las molares, se emplean alambres de 0.8mm de grosor y se le pueden agregar ansas. De acuerdo a la planificación, con los arcos linguales y arcos transpalatinos se puede hacer expansiones, contracciones, correcciones de giroversiones, verticalizaciones de molares unilaterales, distalizaciones simétricas y correcciones de inclinaciones ya sean simétricas o asimétricas.1,12,14

Los arcos linguales pueden ser usados para aplicaciones pasivas para mantener la posición del diente o para mover los dientes con configuraciones activas. Las aplicaciones pasivas incluyen mantener espacio, reforzar el anclaje para minimizar efectos adversos, y como base de la estructura para añadir resortes auxiliares. Las aplicaciones activas incluyen rotación molar, arco de expansión y de constricción, ambos simétricos y asimétricos, y un tip-back unilateral.

El arco lingual puede ser usado por sí mismo o insertado como complemento del aparato labial. Un arco lingual adicional es a veces necesario porque el arco labial (vestibular) tiene dos grandes limitaciones: Consideraciones de anclaje a los dientes adyacentes e inestabilidad del arco posterior.
En los arcos dentales, el arco labial (vestibular) de acero inoxidable más rígido de 0.022”x0.028” puede tener una tasa de fuerza-deflexión muy baja en el extremo libre si se carga con una fuerza lateral. Por lo tanto, la pérdida del ancho molar terminal se puede observar con frecuencia después de la aplicación de elásticos Clase II y Clase III, de las fuerzas del arco extraoral y durante la alineación interarcos porque los alambres pueden haber estado sujetos a algunos componentes laterales de la fuerza.
Al considerar el uso de un alambre de níquel-titánio de baja rigidez que sea recto sin forma de arco, si éste se coloca desde el molar terminal a la molar terminal, puede alinear efectivamente los dientes; sin embargo, la baja rigidez del alambre probablemente no cambiará la forma del arco. Relacionado con la estabilidad del ancho está el control de inclinación axial bucolingual molar. Un arco edgewise totalmente enganchado en el tubo o soporte molar en teoría podría controlar activamente o mantener pasivamente la inclinación molar bucolingual; en la práctica, sin embargo, el “juego” del alambre permite la inclinación molar y los cambios potenciales de ancho como resultado de componentes verticales u horizontales de fuerzas de un elástico o un arco extraoral.

Una limitación significativa del arco lingual es su selección de anclaje inherente, donde el diente adyacente determina en anclaje y el sistema de fuerzas producido

![Gráfico de acción del arco lingual y arco labial](image)

Fuente: Burstone Ch 14

FIGURA No 21

Diferencia de acción del arco lingual y arco labial.

A. Arco labial: efectos adversos de los dientes adyacentes.
B. Arco lingual: sin efectos adversos en los dientes adyacentes.

Un arco labial (vestibular) usa la segunda molar y el segundo premolar como anclaje, mas como guiando los efectos adversos a los dientes adyacentes de la molar. A diferencia de un arco lingual, que trabaja cruzando el arco para utilizar una anclaje reciproco. Existen muchas posibilidades útiles para aplicar la selección de anclaje del arco cruzado incluso con sistema de fuerzas simétrico y asimétrico.

El arco labial da solo limitadas opciones usando dientes adyacentes como anclaje para mover molares.
El anclaje de una molar posterior para movimiento abre más posibilidades útiles para una mecánica racional.

La distancia del arco cruzado entre dos molares es una de las distancias más largas disponibles en la cavidad oral.

El aumento de la distancia interbracket proporciona muchas ventajas, como baja tasa de fuerza-deflexión, mayor rango de acción, mayor cantidad de brazos de momento y facilidad para evaluar la geometría del alambre con el bracket. Debido a esto, el arco lingual puede ser uno de los dispositivos fijos más sencillos donde los arcos se insertan en los brackets.

Para aplicaciones pasivas, el arco lingual puede ser soldado de manera segura a una banda ortodóntica; sin embargo, los accesorios para alambres/arcos extraíbles permiten cambios frecuentes de ajuste activo y pasivo cuando está indicado. Un arco de acero inoxidable doblado de 0.036 pulgadas (0.9 mm) se ajusta cómodamente en una caja lingual.

Fuente: Burstone Ch14

FIGURA No 22
Caja lingual

En un arco labial, siempre se necesita un poco de juego entre el bracket y el arco, incluso con un arco de tamaño completo, ya que comúnmente se requiere una mecánica de deslizamiento.

Por lo general, son los primeros molares los que están conectados en un arco lingual; sin embargo, los segundos molares también se pueden conectar, o incluso la canina a las barras caninas puede comprender un arco lingual. En el arco maxilar, dos diseños son básicos: el arco transpalatal (ATP) y el arco de herradura. Aunque un ATP generalmente se inserta desde mesial de la caja lingual a veces es deseable insertar ir desde la parte distal. Esto puede evitar el choque si hay presente un torus palatino o un segundo premolar posicionado lingualmente. Colocar un
ATP más distal también puede influir en el sistema de fuerza para producir asociación. El arco de herradura maxilar tiene la ventaja de ser simple y fácil de fabricar porque se necesita un contorno palatino mínimo. Debido a que la orientación del alambre está a 90 grados con respecto a un ATP, el sistema de fuerza es especialmente adecuado para tipos especiales de movimiento de los dientes.

Fuente: Burstone Ch 14

FIGURA No 23
ATP Maxilar

A. ATP insertado a mesial en el bracket lingual.
B. ATP insertado a distal en el bracket lingual.

Fuente: Burstone Ch 14

FIGURA No 24
Arco lingual en herradura en el maxilar
Debido a la lengua, los arcos linguales mandibulares deben tener la configuración de herradura existiendo dos tipos de arco comúnmente utilizados. El arco lingual mandibular alto toca el cíngulo incisivo y se utiliza para el mantenimiento del espacio o para un mayor anclaje incisivo. También se puede usar para evitar que el incisivo mandibular se incline lingualmente en la terapia de extracción. El arco mandibular bajo se coloca debajo de la lengua y no toca los incisivos mandibulares. Es más universal en sus aplicaciones, incluido el control de la anchura posterior, las inclinaciones axiales bucolinguales molares y como base para los resortes. El arco lingual mandibular bajo debe fabricarse tan apical como sea posible para que la lengua no aplique una fuerza vertical o hacia delante sobre él. Su posición baja tiene la ventaja adicional de una curvatura suave que es fácil de fabricar y que no requiere un contorno alrededor de los dientes irregulares.

![Arco linguales mandibulares](image1.png)

Fuente: Burstone Ch 14

FIGURA No 25

Arco lingual

A. Contacto del cíngulo.

B. Sin contacto de incisivos, debajo de la lengua.

![Arco linguales mandibulares](image2.png)

Fuente: Burstone Ch 14

FIGURA No 26

Arco lingual bajo sin contacto de incisivos.
5.3. Ansa rectangular

El ansa rectangular puede ser empleada para la corrección de problemas considerados de primer y segundo orden. Es confeccionada con alambre TMA 0.017" x 0.025".

El ansa debe ser posicionada centralmente en relación del diente que va a ser corregido y debe tener medidas aproximadas de 6 a 7 mm en sentido cervico-occlusal y de 8 a 10 mm en el sentido mesio-distal.1,14

Es un dispositivo de Técnica de arco segmentado, que posibilita resolver malposiciones dentarias, siendo simple de ser confeccionado, un ansa rectangular puede ser confeccionado en alambre de acero inoxidable o de preferencia en alambre de TMA 0.017"x0.025", con dimensiones preestablecidas y en algunas situaciones es necesario ser individualizada (personalizada) dependiendo de la situación.1,15,17,24

Para llegar al movimiento dentario deseado, la aplicación del sistema de fuerzas adecuada es de suma importancia. Para un movimiento dentario, apenas una combinación de fuerzas y momento puedes ser considerado correcto. La distribución del alambre del ansa rectangular con respecto al bracket determina la relación momento-fuerza, y el movimiento del diente es producido por la desactivación de la misma ansa.1,9,31

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{ansa_rectangular.png}
\caption{Fuente: Gavino T 31}
\end{figure}

\textbf{FIGURA No 27}
Ansas rectangular

5.3.1 Indicaciones

- Sirve para la corrección aislada de dientes en mala posición, generalmente caninos y premolares, así como también en segundos molares e incisivos.14,15,31
• Actúa en los desajustes dentarios del plano horizontal (corrección de problemas de 1er orden), como rotaciones o giroversiones.1,14,31

• Actúa en los desajustes dentales del plano vertical (corrección de problemas de 2do orden), como intrusión o extrusión, mesialización o distalización radicular. 15,31

• Indicada en lugares de espacios cortos o pequeños (corrección de 2da molar).12,14

• Indicada en lugares amplios (corrección de caninos y premolares). 2,31

5.3.2. Contraindicaciones

• Los casos en que el sistema de fuerzas generado por un alambre continuo coincide con el deseado por el ortodoncista.31

5.3.3. Ventajas

• Permite un excelente control tridimensional de dientes mal posicionados. 2

• Sistema con baja relación carga/deflexión. 14,15
 - Fuerza leve y constante.
 - Baja rigidez
 - Fuerzas y momentos constantes.

• Movimiento dentario más eficiente debido a poca fuerza usada. 31

• No hay necesidad de reactivación de ansa. 31

• Constancia en la desactivación de la aparatología. 14,15

• Previsión del movimiento en la preactivación. 31

• Gran variedad de activaciones. 31

• Mínimos efectos secundarios. 2,4

• Se alcanza los movimientos deseados en una o dos citas.31

5.3.4. Desventajas

• Sistema estáticamente indeterminado. 1,12,31

• No es el mejor aparato para torque.31

• Falta de conocimiento de biomecánica por parte de los profesionales. 14,31

5.3.5. Secuencia de confección del Ansa rectangular

Un ansa rectangular es confeccionado en alambre de TMA 0.017”x0.025” presentando 4 dobleces:
- Primer doblez:

Posicionar el alambre en el tubo accesorio del tubo auxiliar de la molar, y marcar en la región distal del diente que se desea mover (canino y premolar), y mesial (2da molares); donde será realizado el primer doblez de 90° en dirección cervical.31

Fuente: Gavino T 31

FIGURA No 28
Dimensiones del ansa rectangular

FIGURA No 29
Primer doblez en la confección del ansa
A: Posicionamiento de alambre y marca a distal del diente a mover.
B: Primer doblez en 90° hacia cervical.

Fuente: Gavino T 31
-Segundo doblez:

Marcar el alambre a partir del primer doblez a 6mm y realizar el doblez en 90°, teniendo en consideración e fondo de surco vestibular. No hacer menos que 6mm porque no sería muy efectivo, tampoco debe ser muy alta porque presionaría tejido gingival del paciente.\(^{31}\)

FIGURA No 30
Segundo doblez en la confección del ansa
A: Marca a 6 mm del primer doblez.
B: Primer doblez en 90° hacia mesial.

-Fuente: Gavino T\(^{31}\)

-Tercer doblez:

Marcar el alambre en la región de la cara mesial (canino y premolar) o cara distal (2da molar); aproximadamente 8-10mm en dirección oclusal.\(^{31}\)

FIGURA No 31
Tercer doblez en la confección del ansa
A: Marca a mesial del diente a mover (canino).
B: Tercer doblez en 90° hacia oclusal.

-Fuente: Gavino T\(^{31}\)
-4to doblez:

Marcar el alambre en la altura de la muesca del bracket del diente que se desea mover, donde será realizado el último doblez de 90° en dirección distal (canino y premolar) y mesial (2da molar).

Fuente: Gavino T

FIGURA No 32
Cuarto doblez en la confección del ansa
A: Marca en la dirección de la canaleta del bracket.
B: Cuarto doblez en 90° hacia distal.

Fuente: Gavino T

FIGURA No 33
Ansas rectangulares pasivas

5.3.6. Consideraciones antes de la instalación

Se requiere tener un tipo de anclaje instalado. El anclaje ortodóntico puede ser aplicado por la tercera ley de Newton, que indica que cada acción crea una reacción, de igual tamaño y sentido opuesto. En ortodoncia, la unidad anatómica, que antagoniza la fuerza activa es denominada anclaje. El tipo de anclaje está basado en el tipo de movimiento deseado para el diente. El
segmento reactivo necesita ser estabilizado preferentemente con alambre de Cr-Ni (arco) de 0.019”x0.025 y para dar mayor anclaje es recomendado el uso de barra transpalatina (ATP) en arcada superior o arco lingual (AL) en la arcada inferior.31

El diente a mover debe estar libre, no puede tener ningún tipo de fuerzas como conjugados con alambre amarillo o elásticos que comuniquen con otros dientes.1,14,31

Es importante confeccionar el ansa rectangular de manera pasiva, sin interferencias como también es importante la localización del bracket en la parte media del ansa para poder generar un binario de fuerzas.1,14,31

Se debe simular el movimiento deseado del diente mediante el uso de dos alicates, que demostrará la previsibilidad de los ángulos del ansa a ser activados.31

Al mirar hacia la forma pre-activada, el clínico puede fácilmente predecir la combinación de fuerzas y movimientos en los tres planos del espacio.31

Para la activación del ansa rectangular para resolver problemas de 2do orden, se consideran los 4 ángulos, y de acuerdo con el movimiento deseado el dispositivo será activado, abriendo o cerrando los diversos ángulos del ansa de acuerdo a la necesidad.31

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{ansa.png}
\caption{Ángulos del ansa rectangular}
\end{figure}

Fuente: Gavino T31

También para la activación del ansa rectangular para problemas de primer orden, se puede realizar la activación de una o dos hasites o piernas.31
En el ansa se debe verificar la posición neutra. La posición neutra del ansa rectangular es cuando la misma está pre-activada, posicionada dentro de la canaleta del bracket, configurando el mismo diseño inicial rectangular. La revisión de la posición neutra permite visualizar si habrá o no fuerzas verticales.

Luego de la evaluación de los criterios detallados, se puede instalar el ansa rectangular, dependiendo del objetivo de movimiento deseado para la corrección de la malposición dentaria.

5.3.7. Activaciones del ansa rectangular

La importancia de construir el alza rectangular de forma pasiva es una facilidad de visualización de sus preactivaciones, y se puede verificar la dirección del movimiento dentario frente a la acción del sistema de fuerzas generado. Para activar el ansa se emplean las geometrías de Burstone.

- Para la corrección de problemas de 2do orden se trabaja con geometría de IV, V y VI.
- Para la corrección de problemas de 1er. Orden se trabaja con geometría IV, V y VI.

Ejemplos de correcciones de 2do orden:
FIGURA No 36
Ángulos de ansa rectangular

Intrusión: geometría V (se abre ángulo 3 y se cierra ángulo 4)31

A. [Imagen de la opción A]

B. [Imagen de la opción B]

C. [Imagen de la opción C]

D. [Imagen de la opción D]

Fuente: Gavino T 31

FIGURA No 37
Activación para intrusión
A: Forma pre activada.
B: Ángulos a ser activados para la intrusión.
C: Instalación del ansa rectangular preactivada.
D: Fuerzas y momentos generados por la geometría V.

Fuente: Gavino T 31
Extrusión: geometría IV (se abren ángulos 1 y 2) \(^{31}\)

A. Forma pre activada.
B. Ángulos a ser activados para la extrusión.
C. Instalación del ansa rectangular preactivada.
D. Fuerzas y momentos generados por la geometría IV.

Fuente: Gavino T \(^{31}\)

FIGURA No 38
Activación para extrusión
A: Forma pre activada.
B: Ángulos a ser activados para la extrusión.
C: Instalación del ansa rectangular preactivada.
D: Fuerzas y momentos generados por la geometría IV.
Angulación radicular: distalización de la raíz: Geometría VI (se abre ángulos 1, 2, 3 y se cierra ángulo 4) 31

FIGURA No 39
Activación para distalización de raíz
A: Forma pre activada.
B: Ángulos a ser activados para la distalización de raíz.
C: Instalación del ansa rectangular preactivada.
D: Fuerzas y momentos generados por la geometría VI.

Correcciones de problemas de 1er orden: giroversiones

Para este tipo de correcciones tenemos como referencias los brazos en el ansa rectangular que será activados dependiendo de la situación. 12,14,31
Es importante siempre observar la superficie oclusal de la arcada dentaria, donde observaremos que el diente a mover tiene una superficie (mesial o distal) en una posición derecha de acuerdo con la arcada dentaria. El centro de rotación se determina, pudiendo coincidir con el centro de resistencia del diente, mesial o distal al mismo tiempo.

-Corrección del diente con la distal para palatino y centro de rotación en mesial: activación del brazo A para geometría IV.

Para corregir la giroversión de un diente que se presenta de distal para palatino, debe simular el movimiento de rotación de distal para vestibular con ayuda de dos alicates.

Verificar durante la simulación cuál o cuáles son los ángulos alterados con el movimiento y realizar la activación del ansa.

Fuente: Gavino T

FIGURA No 40
Ansa rectangular y hastes de activación 1er orden

FIGURA No 41
Simulación de movimiento de Geometría IV
Activación doblando el haste A para afuera con Geometría IV

Fuerzas y momentos generados por el ansa activada en Geometría IV
-Corrección del diente con posición a mesial para palatino y centro de rotación en la distal: activación del brazo B para la forma geométrica V.

Para corregir la giroversión del diente que presenta a distal para palatino, debe simular el movimiento de rotación de distal para vestibular con ayuda de dos alicates.

Verificar durante la simulación cual o cuales ángulos con los alterados con el movimiento y realizar la activación del ansa.

Fuente: Gavino T

FIGURA No 44
Ansa activada en Geometría IV

FIGURA No 45
Ansa activada en Geometría V
Fuente: Gavino T 31

FIGURA No 46
Fuerzas y momentos en Geometría V

-Corrección del diente con posición a mesial hacia vestibular y con centro de rotación en distal: geometría VI. 31

Para corregir la giroversión del diente que se presenta a mesial para vestibular, debe simular el movimiento de rotación de mesial para palatino con ayuda de dos alicates. 12,31

Verificar durante la simulación cual o cuales ángulos con los alterados con el movimiento y realizar la activación del ansa. 14,31

Fuente: Gavino T 31

FIGURA No 47
Simulación de movimiento en Geometría VI
FIGURA No 48
Ansa rectangular activada en Geometría VI

FIGURA No 49
Fuerzas y momentos generados por el ansa rectangular activada en Geometría VI
5.4. Arco de intrusión

Burstone preconiza la utilización de arco de intrusión entre los segmentos anterior y posterior con fuerzas leves y constantes para evitar efectos colaterales en el segmento posterior y conseguir la intrusión deseada (80g de fuerza para los cuatro incisivos superiores y 50g de fuerza para los incisivos inferiores). Todavía para un mejor control, es realizada inicialmente la intrusión de los incisivos, seguido por la intrusión de los caninos, minimizando la magnitud de las fuerzas utilizadas y evitando grandes fuerzas extrusivas en el segmento posterior. El control de la inclinación de los dientes anteriores se da atándolo al arco de intrusión al alambre de estabilización del segmento anterior, de forma que se direccionan las fuerzas intrusivas anteriormente, posteriormente o en el centro de la resistencia de este segmento. 1,2,23

El arco de intrusión usa los mismos principios de “cantilever”, con una activación característica en sentido ocluso-vertical. Puede ser construido con alambre de 0.017”x0.025” de TMA o 0.018”x0.025” de acero inoxidable con helicoides. Este arco es atado al segmento posterior por el tubo horizontal auxiliar de las primeras muelas. La parte anterior del arco de intrusión está amarrado en uno o dos puntos del alambre de estabilización, no siendo encajado directamente en las canaletas de los brackets de los dientes anteriores 1,15,23

FIGURA No 50
Ansa rectangular instalada en Geometría VI
FIGURA No 51
Arco de intrusión

Cuando los incisivos presentan inclinaciones normales es recomendado ligar el arco de intrusión en el segmento anterior próximo al tercio distal de los incisivos laterales. Si la vestibularización de los incisivos es requerida, se recomienda amarrar el arco de intrusión al segmento anterior entre los incisivos centrales.¹,¹₄,¹₅

Cuando los incisivos se encuentren vestibularizados, se indicará la utilización de arco de intrusión de tres piezas, que consiste de un segmento anterior (los 4 incisivos) estabilizados por un alambre de 0.021”x0.025” con una extensión distal para la agregación de dos “cantilevers”
Después la intrusión de los incisivos es hecha a estabilización del mismo con un arco continuo con desvío en los caninos y es iniciada la intrusión de estos caninos con dos "cantilevers".9,15

La inclinación vestibular de los incisivos puede ser conseguida con la utilización de arcos continuos o con arcos de intrusión atados en posición anterior al centro de resistencia del segmento anterior. La utilización de los alambres NiTi con curva de Spee reversa en el arco inferior y acentuado en el superior, puede dar un mejor control para evitar la extrusión de los dientes posteriores.23,24

Cuando la combinación de dos movimientos es requerida, se puede ligar los caninos al segmento anterior y colocar niveles de fuerzas verticales mayores en el arco de intrusión. De esa manera se obtiene una intrusión en el segmento posterior. La extrusión del segmento posterior puede ser conseguida con aparatos removibles con topes anteriores, asociado o no a aparatos extrabucales con tracción cervical.15,23
Corrección de sobremordida profunda asimétrica

5.5. T de Burstone

El cierre de los espacios dejados por las extracciones puede darse de tres maneras distintas:

A. Solamente retracción anterior con control de la unidad de anclaje de forma que ella no contribuya con el cierre de los espacios (anclaje máximo).1,13,30

B. Combinación de retracción anterior y protrusión de los dientes posteriores (anclaje moderado).

C. Solamente protrusión de los dientes posteriores, manteniendo el segmento anterior en posición. (anclaje mínimo).1,13,30

Burstone clasificó el anclaje requerido en grupos: A, B y C de acuerdo con la necesidad del anclaje de cada caso se máxima, moderada o mínima, respectivamente.1,9,12

Para cada grupo de anclaje fueron creados dispositivos mecánicos con dobleces de pre-activación específicos con el objetivo de generar los sistemas de fuerzas necesarios.9,12
Los dispositivos mecánicos utilizan en cierre de espacios por la Técnica de Arco Segmentado son ansas que no son influenciadas por la fricción entre los alambres y los brackets.29,30

Las mecánicas que dependen del deslizamiento de los alambres en los brackets generalmente tienden a utilizar fuerzas de gran intensidad, una vez que parte de ella son absorbidas por la fricción, en cuanto otra parte para el movimiento. Más allá, fuerzas pesadas favorecen la pérdida de anclaje.9,12,14

En los casos de anclaje de grupo B son utilizadas ansas en “T” confeccionadas con alambre de TMA 0.017” x 0.025”. Estas ansas son posicionadas centradas en la distancia entre los tubos del segmento anterior (entre incisivo lateral y canino) y del segmento posterior (tubo auxiliar de primera molar). Son hechos los dobleces de pre-activación de forma que simula una “V” simétrica.29,30

Fuente: Sakima M1

FIGURA No 54
Ansas en T de retracción sin activaciones

Fuente: Sakima M1

FIGURA No 55
Ansas en T de retracción con doblez de preactivación
Estas ansas generalmente son activadas 7mm generando fuerzas horizontales de aproximadamente 340g. Después la activación de un 1mm pierde intensidad en torno a 50g – 60g. Con este tipo de activación inicialmente son generadas proporciones momento/fuerza de 7/1 ocasionando inclinaciones controladas en los segmentos anterior y posterior.27,30.

Con la disminución de la fuerza, después de la activación va ocurriendo un aumento en la proporción momento/fuerza generando movimientos de traslación y posteriormente de corrección radicular. Después de 3mm de desactivación es recomendada una nueva activación del ansa.1,9,12.
CONCLUSIONES

1. La técnica de arco segmentado que ha sido desarrollada en 1962, se basa en el uso de los principios biomecánicos para conseguir el movimiento dentario deseado teniendo el control de los efectos adversos o del movimiento dentario no planificado en las piezas cercanas, logrando una mayor eficiencia en el trabajo clínico.

2. Existen dispositivos que se emplean en la técnica de arco segmentado como los arcos lingual y transpalatino que buscan corregir tempranamente las zonas que serán usadas a futuro como zonas de anclaje.

3. La técnica de arco segmentado se emplea para el tratamiento de maloclusiones complejas en las que por el apiñamiento o rotación de piezas dentarias no permitan el uso de un arco continuo tradicional.

4. El ortodoncista deberá conocer cómo funciona cada dispositivo empleado en la técnica de arco segmentado para optimizar su uso de acuerdo a la selección del caso clínico.
REFERENCIAS BIBLIOGRÁFICAS

ANEXOS
Weiland, en el año 1996 comparó la eficacia de la corrección del overbite obtenido por la técnica de arco convencional continua y la técnica de arco segmentado recomendado por Burstone. Su muestra fue de 50 pacientes adultos con mordida profunda, 25 de ellos fueron tratados con la técnica convencional, en la otra mitad se manejó la técnica de arco segmentado que fue usada para la corrección de la maloclusión vertical. Con este estudio se concluyó que la técnica de arco segmentado fue superior a la técnica convencional para lograr la intrusión de incisivos.²

Juvvadi, en el 2010, evaluó las propiedades de los alambres hechos por dos nuevos materiales y los comparó con los de acero inoxidable. Su ejemplo consistió en 30 diferentes longitudes de 3 tipos de alambres: acero inoxidable, aleación de Titánio y aleación de Beta-Titánio. Las propiedades que evaluó fue: dimensión, tipo de bisel, composición, características de la superficie, fricción, fuerza de tensión, elasticidad, fuerza de rendimiento y características de la carga de deflexión. Usó un microscopio y a fluorescencia de rayos x para la evaluación de las superficies. Una máquina universal de prueba evaluó las características de la fricción, tensión y doblez de tres puntas. Concluyó que con la aleación de Beta-Titánio aumentó la fuerza de tensión y la fuerza de rendimiento tuvo un valor de elasticidad bajo, sugiriendo gran resistencia frente a fracturas. La aleación de Beta-Titánio puede también generar fuerzas suaves.¹⁸

Ozaki et al, en el año 2014, determinó la longitud óptima para lograr el movimiento del diente anterior de los brazos de poder. Se aplicó un método de elementos finitos tridimensionales para la simulación de una mecánica de brazo de potencia segmentado n masa y retracción. El tipo de movimiento, es decir, la ubicación de la longitud del brazo central se calculó después de aplicar la fuerza de retracción. La mecánica de arco segmentado combinada con el brazo de poder puede proporcionar una mayor cantidad de relación de momento a fuerza suficiente para controlar el movimiento del diente anterior sin generar fricción, fuerzas verticales cuando se aplica la fuerza de retracción paralelo al plano oclusal. Es por esto que se considera que la mecánica del brazo de poder segmentado tiene una aplicación simple por su diseño y es más eficiente y controlable el movimiento del diente.⁴

Caballero et al, en el año 2015, usó el método del elemento finito de diferentes activaciones bucolinguales compensatorias. El estudio del elemento finito del arco dental del cuadrante derecho de la mandíbula con estructura periodontales fue modelado usando SolidWorks software. Después todas las estructuras óseas, dentales y del ligamento periodontal de segunda molar a canino fueron gráficamente representadas, brackets y tubos fueron moldeados. En los cuatro tubos de los dientes posteriores se ancló el cantilever de Titánio-molibdeno de 0.017” x 0.0.25”.

51
Como resultado se obtuvo que los 6° de toe-in logró intrusión pura del canino. Por lo que concluyó que la mecánica simulada de segmento en este estudio puede generar pura intrusión del canino mandibular cuando la cantidad adecuada de toe-in (6°) compensatoria es incorporada en el cantiléver para prevenir la inclinación de la corona hacia lingual o vestibular. Los efectos del anclaje del segmento posterior son pequeños y inicialmente concentrados en la primera molar.

Tepedino en el 2018 publicó un estudio sobre los tratamientos ortodónticos en caninos maxilares impactados palatinamente. Por lo que cuantificó un simple y reproducible sistema de extrusión de caninos impactados que pueden dar de la cantidad de fuerza correcta para la extrusión. 10 pacientes usaron un cantilever hecho con 0.6-mm o 0.7-mm alambre de acero inoxidable moldeado alrededor de la barra transpalatina con 3, 5 o 7 loops en la forma de resorte helicoidal. Una máquina de prueba mecánica fue usada para medir la fuerza que produce el cantiléver en la activación: 3, 6, 9, 12, y 15 mm. El sistema propuesto tiene un diseño simple y robusto, es fácil de construir y manejar, y puede proveer de la cantidad de fuerza deseada con cambiar el diámetro del alambre y el número de loops.